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,\bstract·-The ctfective thermoelastic properties of composites with coated short tibers are derived
in this work. Under the assumption of thin coating. the stress field of the coated layer remains
uniform aCrllSS the thickness of the layer but otherwise possessing variation along other directions
and can be found in terms of the stress field of the fiber and the dir~'Ction cosines through the use
of the interface jump condition octween the coating and the fiber. The etfective thermoelastic
properties arc then derived based on Mori-Tanaka's scheme ,lOd the modified Walpole method.
Numerical comparisons to e~isting results f"r I,'ng coaled tibers are made. In addition. a parametric
study is also included.

INTRODUCTION

Composite materials have been extensively used in many applications. particularly as a
structural component due to their high specific stiffnesses and strengths. In most applications
the fibers arc not coated. Recently. there has been a growing demand for coated fibers as
a reinforcement in some new application areas such as electrical composites. metal matrix
composites (MMC) and ceramic matrix composites (CMC) intended for high temperature
applications. Improvement in the bonding between the fiber and the matrix. preventing
oxidation or the fiber. and introducing transition properties are the basic functions of
coating.

The basic problem in the composites with coated fibers is the calculation of the
thermoelastic stress field and its properties. Walpole (1978) proposed a simple method to
calculate the stress lield within a thin coating if the solutions to the stress field are known
for a single noncoated fiber embedded in an infinite matrix. avoiding actually solving the
elastic field. Mikata and Taya (1985. 1986) applied Boussinesq -Sadowsky stress functions
to calculate the stress field for two confocal prolate spheroids embedded in an infinite body.
Hatta and Taya (1987) calculated the tl1l:rmal stress field within the coating for a coated
liber composite by modifying the Walpole method together with the Eshelby equivalent
inclusion method. The above mentioned works limited themselves to the stress field but not
the thermoelastic properties.

Benveniste e/ (//. (1989). derived the thermoelastic stress field and effective properties
for the composites with long continuous fibers. Chen e/ (//. (1990). extended the •• bove work
to cylindrical orthotropic fiber composites. Pagano and Tandon (1988. 1990) gave their
predictions to the thermoelastic properties for multidirectional coated fiber composites. in
which the fibers were continuous. All of these works hold for both thin and thick coating
but limit themselves to composites with long continuous fibers, partially due to the dilliculty
in solving the stress field of short coated fiber composites.

Thus. since there an.: no existing works showing the thermoelastic properties for short
coated fiber composites. it is intended in this work to derive the tensorial expressions for
the prediction of their effective thermoelastic properties. It will be assumed that the coated
layer is thin and hence the stress field within the coating is reasonably assumed to be uniform
through the thickness but otherwise may vary along other directions. Hence. Halla and
Taya's work (1987) is followed in this work to calculate the thermoelastic properties.
Numerical comparisons with other existing works have been made and the results are
satisfied. Parametric studies are also conducted and the results are presented below.
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EFFECIWE ELASTIC MODULI

Consider an infinite elastic body (without inclusions. i.e. the matrix only) subjected to
a uniform stress field a o. The uniform strain £0 is

(1)

in which CO is the elastic modulus tensor of the matrix (which is assumed to be isotropic).
It is noted that in this work the bold face capital English letters and small Greek letters
denote the fourth order and the second order tensors respectively. When there are ellipsoidal
inclusions (coated fibers) present in the matrix, a perturbed stress field is induced and is
denoted as o-(x). The total stress field a(x) is now the sum of two stress fields: ao+o-(x).
Define the volumetric average of the perturbed stress and strain fields of the matrix, 0- and
£ according to

in which

(2)

D.12, D-12: domain of the whole elastic body (compositc), all the coatcd fibcrs and
thc matrix respcctively,
volume of the matrix,
volumetric average for the domain D-12.

Thus the average stress field in the matrix is

(3)

Denote Cr and C' as elastic modulus tensors of the fiber and the coating. Then by use of
Eshelby's equivalent inclusion method (Eshelby, 1957; Mon and Tanaka, 1973), one has:

in the domain of a typical tIber, 12 I.

a f = e f .£f = er. (£0+£+£11 +£12)

= em. (1l0+i!+1l 11 +1l 12 _£*')

and, in the domain of the coating of a typical fiber, 12! -12 1,

a C = e"'Il" = e"'(1l0+i!+1l22+1l21)

= em. (Il o +i!+£22 +Il!l _1l*2)

(4)

(5)

in which £*. and £*2 are "eigenstrains" (Mura, 1982) defined in fl. and fl 2-12 .. respectively,
and Il'/ is the disturbance of the strain field in the ith domain due to the existence of the jth
phase with i(or j) = I (fiber) and 2 (coating). From Eshelby (1957), we know

Ill. = 5·£*1, (6)

where 5 is Eshelby's Tensor (Eshelby, 1957; Mura, 1982).
In the present model, the disturbance of the strain field in fl, due to the coating is

averaged over the fiber domain fl •. The average of the disturbed strain field is denoted as
£12. Thus we have £12 = (ii I2(X»I' Then according to Hatta and Taya (1987), under the
assumption of a thin coating layer, one has
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(7)

in which II and 12 denote the volume fraction of fiber and coating, respectively, and <)I

and <)2 denote the averaged quantity over n I and n2 - n 10 respectively, and further, the
fourth rank tensor So is related to the Eshelby tensor S and the surface directional cosine
nk of a fiber surface outward unit normal n as:

(8)

in which

(9)

Under the assumption of thin coating and hence the constant variation of stresses and
strains through the thickness of the coating, the volume average ofa stress or strain function,
being a function of surface direction, i.e. F(n), over the domain of coating, n2-n l , can be
calculated in a simple way. The details are provided in Appendix A.

Now since the total volumetric average of the stress field of the whole composite must
be equal to 0'0' it follows that

(10)

in which 10 is the volume fraction of the matrix. Substituting (3), (4) and (5) into (10) gives

(II)

In addition, the total volumetric average of the strain field of the whole composite, 8 T, can
be expressed as

eT = 10(80+ii) + II (80 +ii+e ll +8
(2

)+12<80+ii+8 21 +e22
)2

= 80+ii+ 11(8 11 +e I2)+12<821 +822
)2

= eo+ 118.1 + 12<8. 2
)2 (12)

in which the last equality is obtained through the use of (II).
Let us focus on the interface between a short fiber and a thin coating. Then the

continuity of traction and displacement vectors requires at this interface that (Hill, 1961 ;
Walpole, 1967)

and (13,14)

Again n is a unit vector outward normal to the fiber surface. The displacement gradient
tensor u'J is discontinuous across the interface and the jump of uiJ across the interface can
be expressed as

which in turn can be rewritten as

(15)

Substituting (4), (5) and (15) into (14) yields
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(16)

in which

(l6a)

Substituting (15) and ( 16) into (5) gives

(IT)

Let

( 17a)

Thus

in which

(\8)

I) 1 = C" +C" . P" . (C'" - C") D: = C" . I" . cm ,

From (5) and ( IX), we can get

( IXa)

(C" '_C'" ').I)I./:I_(C' '-em ')·n-~·I:'d

(C" '_C'" ').I)I'(I:o+r.+I: II +/: I:) _(ce '_e'" ')'():'r.*I, (19)

Substituting the above equation into (7) leads to

el~ = II~(SIl'e*~):

=/I:(SIl·(C" '_cm ')·D1):·(f.u+r.+e'I+I:I:)

-/I:(SIl·(C: '_C'" ')·1):):'1:*',

The above equation C~l!1 be rearranged to yield

in which

(20)

(21 )

RI=(I-D') I'D' R~=(I_nl) "D~

()1=fl:(S"'(C' '-COl ')'D I
): [)~=/I:(S"'(C' '-COl ')'D~)l (2la)

and 1 is the fourth rank identity tensor defined as

(2Ib)

It is noted that in Appendix: B a sample calculation of the averaged quantities such as
(SIl.(C" '_COl ')'D 1): is provided in detail. Similar quantities such as (SIl.(C' '
COl '). ( 1

). and others [like R J and R~ in (23a)1 belo\v. can be calculated in the same way.
From (5) we know
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ll~1 +Ilz~ -Il*~ = em "(1" _Ilo -s.

Substituting (18). (21) and (22) into (II) yields

in which

2263

(22)

(23)

F I = (l-j~)I + fl R ,+fzR.l+.I~R.l' R, F~ = fl(I+R I )+ fzR} + fzR.l' R,

F, = f,R , + j~R.+ feR,' R , - jJ F~ = -f,(I+Rz)-j~R~- fzR}' Rz

R,=<em "DI>z R~=<em-I'Dz>z. (23a)

Thus. eqn (23) can be rearranged to yield

8 = - F i I . [Fz' £1 I + F, . £0 + F~ , g* I].

Substituting (24) into (2\) yields

(24)

£1 Z = RI ' [Ilo +r." - Fi" I , (FZ' gII + F J ' go + 1'4' g*1 )]- Rz'1l*1

= III ' 1:0 + 111 . I: II + HI ' &* I (25)

in which

From (4). we lind

in which

A = (I-ClIl "er) T=(I+S'ClIl "C'"-S)'

Substituting (6) into (24) and (25) yields

r.= -FI
I 'Wl'S·£*I+F J '£0+F4 'g*l)

= -FII'(Fe·S+F~)·&*I_FI-I'FJ'gu

and

Substituting (27) and (28) into (26) yields

(26)

(26a)

(27)

(28)

&*1 =A'T'[&o-F , 1'(Fl'S+F~)'r.*I_FI-I'F3'&0+HI'&O+(Hl'S+H",&*I]

= E 1 ' &0 +E1 • g* I (29)

in which

Rearranging (29) gives
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(30)

(30a)

Substituting (30) into (27) and (28) yields

t = - FI I '(F2' 8+ F4)' E3 ' &0 - FI ' 'F3' &0

= E4 '&0

and

&12 = HI ' £0+ (H: '8+ H 3)' E) '£0

= E5 '&0

in which

(31)

(32)

Substituting (6), (19), (30), (31) and (32) into (12) yields

in which

Now define the efTt:ctive elastic moduli C· of the composite according to

Then, combining (I) and (33) with (34), the effective elastic moduli C· are given as

(33)

(33a)

(34)

EFFECfIVE COEFFICIENTS OF THERMAL EXPANSION

As a parallel to the above derivation, to evaluate the effective CTE (coefficients of
thermal expansion) of the composites with coated fibers, let us first subject the matrix alone
to a uniform temperature field!!. T. The uniform thermal strains £0 produced due to such a
temperature field are

(36)

in which IXm is the second order tensor of the coefficients of thermal expansion of the matrix.
It is noted that due to free expansion and no applied external loads, there are no stresses
in the matrix, i.e. (10 = O. When there are ellipsoidal coated fibers present in the matrix, a
perturbed stress field a(x) is induced and the volumetric average of the perturbed stress
field of the matrix, a, is again given by eqn (2). From Eshelby's equivalence inclusion
principle, one now has,
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in the domain of a typical fiber, 0 I :

a f = C f , (8+£11 +£11_£TI)

= cm'(8+£II+£I~-£**I)

and in the domain of the coating of a typical fiber. 0 1 - n1 :

a C= CC'(8+£H+£11_£T1)

= C m. (8+£11 +£11 _£**1)

in which

:!265

(37)

(38)

(39)

and ~f and ~C are the tensors of the coefficients of thermal expansion of the fiber and the
coating. It is noted that the relationships for £11 and £12, eqns (6)-(9), are again valid.
Further. the traction continuity and jump condition ofdisplacement gradient given by eqns
(14) and (15), hold here. For easy reference, they are repeated as follows:

(14)

(15)

in which B
C and af are total strains of coating and fiber. Now substituting (37), (38) and

(15) into (14) yields

(40)

in which K~, is defined as cqn (16a). Substituting (15) and (40) into (38) givcs

(41)

in which 0 1 and 0 2 arc given by eqn (18a) and

(4Ia)

with pc defined by (17a).
The total stress average ovcr thc wholc domain is again givcn by eqn (II), and the

total strain average is

From (38) and (41). we can get

= (Cc " _Cm"'). 0 1• (£+gll +gI2) _ (Ce·' _CmO '). 0 1 'a** 1

+[(CC '_cm
O

')·O'+IJ.£T2.

Thus eqn (7) can be rewritten as

in which R I and R 1 are given by (2Ia), and

(42)

(43)

(44)
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From (38) we know that

(45)

Substituting (15), (44) and (45) into (II) yields

in which F 1 and F ~ are given by (23a). and

Equation (46) can be rearranged to give

Substituting (47) into (44) yields

(46)

(46a)

(47)

f:l~ = RI'[I:II_FII'(F~'I:II+F4,£"I+Fj'lln)]-R2'1l**I+R7'lln

= 1I~'I:"+II\'I:**'+fl4'1:T2 (48)

in which II ~ and II \ are given by (25a), and

(48a)

From (37), we have

(49)

in which A and T are given by (26a). Substituting (6) into (47) and (48) yields

(50)

and

Substituting (50) and (51) into (49) yields

1:* * I = A . T . [ - F I I • (F! . 5 + F4) . Il* * 1 - Fl' F j 'Iln + H 4•£n

+ (H~ ·s+ " 3) '1l**I] +(A 'T'5+ I)' em '·cr 'IlTI

= E~·r."I+E,,·llr~+E7·IlTI

in which E~ is given by (29a), and

Rearrange (52) to give

(51 )

(52)

(52a)
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,**1 = (I _ Ez) - I • E6 .,T2 + (1- E~) - I • E7 • STI

= Es .,n +E
9
.,Tl

in which

Substituting (53) into (50) and (51) yields

1167

(53)

(53a)

and (54)

in which

E lo = -Fil'(Fz'S+F4)'Es-Fil'Fs Ell = -Fil'(F~'S+FJ)'E9

E lz = HJ+(Hz'S+HJ)'Es E IJ = (H~·S+H,)·EQ.

Substituting (6). (43), (53), (54) and (55) into (42) yields

in which R s and R~ arc given by (33a), and

E I4 =II E8 + Iz[R s ' (E lo + Elz +8' Ex) - RI•• Ex + R.ll

E is = IIEQ + Iz[R s '(E II + EI.l +S' E.,) - R6 ' K,)

RQ = «CC '_Cm
'). DZ+Ih

Thus the effective coefficient tensor of thermal expansion at· is given as

(55)

(56)

(56a)

(57)

NUMERICAL EXAMPLES AND DISCUSSION

A comparison study with existing works and a parametric study were conducted based
on the formulation developed in the previous sections.

Example I
The first example is a comparison of elastic moduli for a composite with long con

tinuous coated fibers based on the present work with those of Pagano and Tandon's
composite cylinder assemblage model (1988). The materials (m'llrix, fiber and coating) arc
all isotropic and their properties are listed as follows:

fiber: Nicalon

E(GPa) = 200, G(GPa) = 77, volume fraction = 0.6;

matrix: BMAS

E(GPa) = 106, G(GPa) = 43.

In addition, the Poisson ratio of coating material is 0.31. however. the coating Young's
modulus and the ratio of coating thickness to radius of coated fiber were selected as
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Table I. Comparisons of the present model with Pagano and Tandon's work (19MM) on the effective
elastic moduli of a composite with long coated fibers

Coating
Coating thickness modulus E" EO' :,! 1~ G"

Fiber radius GPa GPa GPa GPa GPa

0 162.528 151.964 6O.61~ 59.81~

(162.530) 1152.8~0) (60.615) (60357)

0.3~5 160.830 ~0.391 18.495 15.118
(160.833) (~5.I~S) (18.361) ( 18.010)

0.01291 345 160.920 106460 ~3.616 40.848
(160 922) (109.7~1 ) (43.611) (~2.811 )

3~.5 161.~ II 1~7.090 58.696 57.68~

(161.412) ( 1~8.03l) (58697) (58.263)

0.3~5 153.982 21.620 10932 8.11~

(153.986) (22.891 ) ( 10.(49) (9232)
006455 3.45 15~.2n 53835 23.410 20.11~

( 15~.296) (58.332) (23.057) (22.850)
3~.5 156.798 130.090 52.019 50.361

( 156.799) (131.901) 52.043) (51464)

0.345 144.994 15.377 8.032 5.766
( 1~5.0(2) (14624) (6.778) (5.lC6)

0.1291 3.45 145557 34.792 15.665 12)n!
( 1~5.5(0) (37.123) ( 14.852) (14.500)

3~.5 150.704 IIH)l6 45.280 ~3.162

( 150.7(4) ( 115.995) (45307) (~491~)

Numhcr' in ( ) are picked from rag,lIlll allli Tandon (1988).

parameters. The results arc documented in Table I. As follows, it is shown that even for a
moderately thick coating. good consistency is still reached.

Example 2
The second example compares our prediction of thermoelastic properties of a com

posite reinforced by long continuous coated fibers with the work by Benveniste et al. (1989).
The material systems I, 3 and 4 are picked from Table I of the work by Benveniste et al.
(1989). They are now redefined as systems I, 2 and 3. The results are documented in Table

Tahlc: 2. Comparisons of the present model with Benveniste I!I al.'s work
(1989) on the c1Teetive thermoelastic moduli of a composite with long

coated Iihers

Materials Benveniste I!I al. (1989) Present

I 1.255 1.255
E,,/E... 2 1.236 1.236

3 2.379 2.380

I 1.188 1.189
/1,,//1... 2 1.171 1.171

3 1.655 1.65~

I 3.224 x 10 • 3.225 x 10 •
:trCe-l) 2 10.09 x 10" 1l).09 x 10 •

3 7.638 x 10 · 7.598 x 10 •
I 3.332 x 10" 3.333 x 10"'

:t"CC- I
) 2 9.071 x 10"' 9.039 x 10 •

3 5.998 x 10 · 5.979 x 10"'

E,,: Effective longitudinal Young's modulus.
!J,,: Effective longitudinal shear modulus.
'IT: Effective transverse coefficient of thermal expansion.
'I" : Effective longitudinal cocllicient of thermal expansion.
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2. Excellent consistency is reached, as expected, since both were based on Mori-Tanaka's
method and the coatings of these three systems were all thin (the ratio ofcoating thickness
to fiber radius is 0.02056 for system I and 0.01329 for systems 2 and 3).

Example 3
In the above two examples, it is seen that the present work gives excellent agreement

with previous analytical work for continuous thin coated fiber. In this example we compare
our solution to recent work by Tong and Jasiuk (1990), where they considered the effect of
coating thickness ofthe effective coefficients of thermal expansion for a composite reinforced
with coated spherical particles. The result is shown in Fig. I. It is seen that in this extreme
case our solution was also valid even when the layer of coating was thick (say, the volume
ratio of coating layer to matrix, 11m, is 0.2). In fact a further confirmation on the validity
of the present solution for the case of thick coating fibers has been shown by the authors
(1991) after a comparison with the work by Pagano and Tandon (1990) on multidirectional
continuous fibers.

Example 4
The fourth example is a parametric study for a short coated fiber composite. The

materials of matrix, fiber and coating are all isotropic. Denoting:

Em. Er• E, = Young's moduli of matrix. fiber and coating.
Vm • Vr. v, = Poisson's ratio of matrix. fiber and coating.
IXm. IXr. IX, = coefficients of thermal expansion of matrix. fiber and coating.
};" flo f2 = volume fraction of matrix. fiber and coating.
I. d = long and short axis of the el1ipsoidal fiber.

The fixed material properties are

Ed Em = 5, Vc = Vr = 0.3, Vm = 0.4, ar!am = 5, f. = 0.5.

The results arc. presented in Figs 2-15. [n Figs 2-8, the effective thermoelastic properties
of the composite are plotted against the ratio of coating volume fraction to fiber volume

1.4

1.2

1.0

ulEC 08Cl Cl •

0.6

0.4

Solid line: Tong and Jasiuk 11990. FIQ. 31
Symbol: our solution Vm-o.2

0.2 .7--=-::---:f-::----;:L~-_!_.~1ooL-~
0.0 0.4 0.6 0.8

Particle volume fraction. f

Fig. I. Comparison of present model with Tong and Jasiuk's work (1990) on dimensionless par
ameter of the effective thermal coefficient. a.Jr1.m• of a composite with spherical coated fibers.



fraction. I:/ II. with the aspect ratio of fiber. 1£1. being chosen as 5. However. in Figs 9-15.
the effective thermoelastic properties of the composite are plotted against the aspect ratio
of the fiber. hi. with I:lfl = 0.04. In all these figures. the ratio of Young's coating modulus
to Young's matrix modulus. E, Em. is selected as the parameter. Besides. in Figs 6. 7. 13
and 14. the ratio of ~u'~m is a combined parameter together with Ec Em.

As follows from Figs 2-6. all the dimensionless moduli (E II Em. E::; Em. G I :;Emand
G:.,! Em) except \',: increase monotonely as the parameter Ec E nl increases. It is also noted
that except 1'1: all these moduli drop drastically near the origin as expected since the value
of zero of Ej Em represents a debonding zone. Furtha. all these moduli including \' I: are
less sensitive to large EjEmthan to small Ec/Em. It also follows from Figs 7 and 8 that when
the parameter Xc, ~m is small. XIX rn is less sensitive to the paranv:ter Eel Em than is Xc,Xm'

As for the behavior of the thermoelastic moduli verSllS the fiber aspect ratio I;d. shown
in Figs 915. this has been known in other works and is not discllssed further here except

3.5...----------------,
I/d=5 --+3.0 ~~ I--+.--+

.~:-._ ..-._.-.._.-.-._ ..... _.-.
25\.... '0 ......

0
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=15 .......
LU "><

2.0 " • : EdEm"'1.5

"x, 0: E/Em=O.15

...... ...... • : E/Em=O.015
1.5 x, , -. -- -- x_

Fig. 2. Relationship or dil1l<:nsionl<:ss longitudll\al Youn~'s Illodulus wrsus rallo or coalln~ volum,
fraClion 10 lih<:r volul1l<: rra'llo,1.
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1.6
E
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0.6

---+---+,
-+~

~-".-.-. _.•.. _. - .. _. - .-. _...._.-.
\ o.

\ 0,

\
"0- •

\ ···0.....

\ + : EdEm=15

\ • : EdEm"'1.5
'- 0 : EdEm",O.15

'x ...... x : EdEm=O,015
'x_

-- x_ - .)C._

0.4 0 0.02 0.04 0.06 0.08 0.10 0.12

tit,
Fig. 3. Relationship (lr dnll,n'!<lt1kS\ transv,r" Youn,,', l1l<ldulus v<:rS(I' rallo or coaling v"lum<:

rraClll'l1 t<l lihcr volUl1l<: fr;"II'''!.
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that it is worthwhile to notice the interesting behavior of Poisson's ratio" I! near the origin
(very short fiber). as shown in Fig. 13.

CONCLUDING REMARKS

In this work. the formulae for effective thermoelastic properties of a thin coated short
fiber composite were derived under the assumption of thin coating and constant variation
of stresses and strains through the thickness of the coating. In the regime of thin coating.
the numerical comparisons with existing works showed excellent consistency. As for the
thick coating. a comparison of our special case with currently available work showed
another satisfaction. A parametric study was also conducted for the purpose of illustration.
The present work should be extendable to many kinds of fibers and randomly oriented
systems. They are currently under investigation and will appear soon.
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" : EJEm-o·015

Vd-5

1.0

._;~:_:::::=:==:=t
2.0 .

\ '0 •••

\
E \
~ 1.5 \

\
\,

.....
...... ....

.... "...
..... 'x-_

0.5L...-_~~~-~~-~..,..._-·"~·~---~,,
o 0.10 0.12

Fig. 4. Relationship ofdimensionless in-plane shear modulus versus ratio ofcmlting volume fraction
10 liber volume fraction.
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APPENDIX A: VOLUME INTEGRATION OVER A TIlIN COATING LAYER

Consider an ellipsoid with circul.. r ..-ross-s.."Ction and whose long axis is I ..nd short axis is d. The equation of
surra..-e of such ellipsoidal inclusion is

(.i,)1 (,,,:): (.i ,):- + - + - =1
I d d

in which X, is the longitudinal a~is. lntrodudng th... dimensionless quantities x, = .iJd and 1= I{d. the above
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equation can be rewritten as

Let

Thus, the unit normal is

JENG-SHlAN CHANG and CHlANG-HO CHENG

(X,)-" 1t -rX,+Xj == L

(
,.

. XI '- 1 \

j(X)= t)+Xi+X,-L

(AI)

(Al)

(AJ)

Introducing polar coordinates in the Xl-X, section:

r == [x~ +xii' 1 = [ I - (7}T :
Then (A I) citn be rewritten as

(X'): ,/' +r' = 1

'llId

(M)

(AS)

tI, (Ab)

Volume itll,',qrUli01I m','r Ilrill coutill,q layer
Under thc assumption of thin coating .lnll hence the constant variittion of stresses aml strains through the

thickness of the coating. the volume :lveritge of a stress or strain function. being a function of surface din:ction.
i.c. F(n), over the domain of .:oating, 0l-Ot, t:oln be approximated by surf:u;e integration over the fiber surface
according to the following formula:

(A7)

in which lI,,1 == dx; + lIr:. It can be easily shown that

So,

[ ( lIr)']'" [(I-I:)X;+I']':lI" == 1+ - dx, == .-..-::=-:;-~ dx ,.
d.t, 1 1 x,

Now (A7) can be written as

f' 1" [(I-t')t'+I"]' l [ (:C )']'" If' 1"(F>,,,,, F(n)'" ',', 'I--'!' dx,dO dsrdO
_, 0 1 - I x I I -, 0

f' 1" [(1- I')X; +1')" 1ft 1"== F(n)' " dx,dOj' dsrdO.
-f 0 I -f 0

(A!!)

(A9)

(AIO)
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APPENDIX B: A SAMPLE CALCULATION FOR TYPICAL FOURTH ORDER TENSORS
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In this work. a lot of fourth order tensor algebra has been involved. Some typical ones requiring an average
over the domain of coating layer. such as D~ in eqn (2Ia) whose tensorial "kernel" is a function of surface
direction cosine of the coating layer. are rather complicated. The algebra can however be simplified jfa shorthand
notation is used. Thus to facilitate the interested readers. a typical sample calculation for these tensors is shown
below in detail. For simplification. the coating material is assumed to be isotropic. which in fact is rather realistic.

We start from the most general symmetric fourth-rank tensor cec'J41l If the symmetries eo"" = C,,,, are
allowed. then this general tensor is given according to the following expression (see. for example. Walpole (1978)] :

C,"', = :t(c5"-n,n,)(c5,, -n.n,) + P,(c5., -n,n,)n.n, +P~(J,,-n.n,)nin,+yn,n,n.n, +~(c5.. -nin,)(c5,,-nj nd

+(c5,. -n,n.)(J,/-n,n,)- (c5i,-n,n,)(J" -non,)] +,,((J.. -n,n,)n,n, + (c5,,-n,n,)n,n, + (t5,,-n,n,)nin,

+ (J" -n,n,)n,nd

= (:t-P, -P~ +y-4,,+~)n,n,n.n,+(:t-~)t5"c5.,+~(J"c5"+c5,,J,,)+(P, +~-:t)n,n,fJi'+(PZ +~-IX)ninA,

+ ("-~)()"n,n,+t5,,n,n. +t5"n,n. +t5"n,n,j. (BI)

The above equation can be written in the shorthand notation

For a transversely isotropic material.

(B2)

:t = (C~~+C2J)/2.

p~ = c,~.

~ = C.. = (C~~ - Czl )!2.

p, = Cz,

y = CII

" = C" = C•• (83)

where the Ci,s are the reduced notation rllr c. Consider now the two rourth-rank tensors given as

C '" (2:t.II,.II~.y.2~.2,tl C' = (2a'.p',.p'z.y'.2~'.2,,').

Then it can be shown thill

and

c· C = (4\1(1:' + 21I,/I'~. 21.11', + 11,y'. Y{Jz + Ili:/. yy' + 211z/I',. 4~~'. 4,,'0.

Now the fourth-rank unit tensor I can be expressed as

Let C' C' = I. Then it can easily be shown that

C'C' =C'C = I

and

(84)

(B5)

(86)

(B7)

(Bll)

a' I' II' _ -Ill
4:ty-4P,p~' ~ - 2ay-21I,II)

Now let

or

Define pm according to

,,' IX II', = -II,
, = '1;'y-21I, II) . 2ay-2p,ll)

(89)

(BIO)

(BI I)

(BI2)
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For simplIcity. let us consider isotropic coated matenal only. Then we have the following symbolic expressions:

(
. ,

1.1.:,
c<·p< == O.~.~,~.O.1.0.1)

J'.("+_J.l,

Thus

0' == C· -C" p' 'C' +C" pc. em

'= (2<1". <I, ,. <I". <I". 2<1, ,. 2e1,)

1>' == C, '(" 'Cn

(BI4)

Due 10 the ~ytl1l11clry of C m
• eqn (Xl can he ea~ily ~hown a~

S" S -C..··I'..'

where

<,".,.

S~==S,,-I

We now have

Denoting

C' '_Cn
·' = (:t.c..t.C1.t.C... t.C•. 2t.C,.2t.C.).

Thus the following expressions can be readily obtained

(1115)

(1116)

(BI71

(BIll)

(BI'l)

(B20)

S"'(C<'-C,,;') == (2(2S~LiC, +S;t.C.J.

2S~M', +S~IlC,2S;Lic. + S~IlCJ' 2S~LiC, +S~t.C,

4S~t.C.,4S~IlC.) '5 (2",,",,",,".,21>5,21>.) (B21)



Now let

or
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F"" = (d" -d.. ,-dn+d14-4dlb+dH)n,n,n4n/

... (d" -d").5,,.54, +d. 5(,),.,)" + t>,.,),/)

+ (d" +d,. -d" )J"n,n, + (dJJ +dJI-dJ,),)"n,n,

+ (d,. -d")(,)'4n,n/+t>"n,n. +t>I,n,n. + <>,.n,n,).

Now since

the component D,;4' can then be computed. according to Appendix A. as

f' f" [( I-I')x! +/
4J'.' [(x')'J'!l If' f"=1" F",,(n), -··'-=-'··.T- . 1- -- dx,dO/ dsrdO

-f u I t.\ I I_I 0

.f' f" [(I-/ l

)X!+/

4

J" If' f"=.IIl. F",,(n)' ---,-- dx, dO dsrdO.
t tl 1 __ I "

2179

(814)

(825)

(826)

(827)


